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Multiple mean change model
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• qn ∈ N - unknown number of change points

• k1,n, . . . , kqn,n - change points

• µ1,n, . . . , µqn+1,n ∈ R - expected values

• {εi : 1 6 i 6 n} -centered residual sequence
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Moving sum statistics
For a given bandwidth G:
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Linear computational complexity!
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Change point estimation via moving sums

• Consider a threshold Dn(G,α) such that – if no change is
present – P (maxG6k6n−G Tk,n(G) > σDn(G,α))→ α.

• Each point k∗ with
• Tk∗,n(G) > σDn(G,α)
• Tk∗,n(G) > Tk,n(G) for all |k − k∗| ≤ ηG

is an estimator for a change point.

• The unknown variance σ2 can be replaced by a local estimator.
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Homogeneous change points
min

1≤j≤qn
(µj+1 − µj)2 · min

1≤j≤qn
(kj+1 − kj)→∞

(minimal jump size)2 · (minimal distance between CPs)

Then (under certain assumptions, e.g. α = αn → 0):

Single-scale mosum with appropriate bandwidth
• yields consistent estimators for number and location of change

points.
• achieves minimax optimal separation rate.
• achieves minimax optimal localisation even for an unbounded

number of change points, in situations where such
minimax-results are available.

• Generalizations beyond mean changes have been obtained
(Reckrühm, 2019) including e.g. changes in count time series or
(non-)linear regression.
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Multiscale change points

min1≤j≤qn

[
(µj+1 − µj)2 ·min(kj+1 − kj , kj − kj−1)

]
→∞

(compare with homogeneous change points:

min1≤j≤qn(µj+1 − µj)
2 ·min1≤j≤qn(kj+1 − kj)→∞ )

Example: Mix-Signal:
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=⇒ Single-scale mosum no longer consistent nor optimal!
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Mix-Signal
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Bandwidths: G = 10, 30, 60, Solid: α = 0.1, Dashed: α = 0.5
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Asymmetric bandwidths
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(G = 30, 120, (30, 120))
Second change point is only detected with asymmetric bandwidths.
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Localized Pruning

Removing candidates obtained from multiple bandwidths by a top
down search:

• Find sets: Adding further candidates, monotonically
increases SC (Schwarz-like information criterion).

• Global procedure: Pick the one with smallest SC among those
with smallest numbers of elements.

• Local procedure: Adaptation due to possible boundary effects.

Computational Speed:

• Usually truncation of the search space.

• Above properties are needed to prove consistency.

Localized pruning can be combined with other candidate-generating
methods.



FACULT Y OF
MAT HEMATICS

Data segmentation based on moving sum statistics | 10

Usage example in R-package mosum
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x <- testData(lengths = c(50, 50, 200, 300), means = c(0,

1, 3, 0),sds = rep(1, 4), seed = 123)

mlp <- multiscale.localPrune(x)

print(mlp$cpts); print(mlp$pooled.cpts)

Output:
[1] 50 100 300

[1] 29 43 47 48 50 51 53 89 94 96 100 101 300
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Localized pruning

• No bandwidth choice necessary.

• Extends consistency and optimality properties of single-scale
mosum to the multiscale change point problem.

• Theoretic properties obtained under general assumptions
permitting heavy tails and dependence.

• Competitive in terms of performance and run time.

Comparison for sub-Gaussian and sub-linear changes:
Detection lower bound Localisation Computational Beyond

Methodology Multiscale Rate Multiscale Rate complexity sub-Gaussianity

MoLP 3 log (n) 3 log (qn) O(n log (n)) 3

Chan and Chen (2017) 7 log(n) 7 log(n) O(n log(n)) 7

Single-scale MOSUM 7 log(n) 3 log(qn) O(n) 3

Fromont et al. (2020) 3 log(n) 3 log(qn) O(n2) 7

Wang et al. (2018) (LSE) 7 log(n) 3 log(n) O(n2) 7

Wang et al. (2018) (mWBS) 7 log(n) 3 log(n) O(nRn) 7

Baranowski et al. (2019) 7 log(n) 3 log(n) O(nRn) 7

Frick et al (2014) 7 log(n) 7 log(n) O(n2) 3

Li et al. (2019) 7 qn log(n) 7 qn log(n) – 7

Fryzlewicz (2018) 7 log2(n) 7 log2(n) O(n log2(n)) 7
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DNA Data: Normalized copy number ratios:
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Vertical solid lines:
Boundaries between chromosomes

Vertical broken lines:
Change point estimators from our pruning procedure,
dashed: MOSUM+locPrun, dotted: WBS+locPrun

Crosses: Different competing procedures.

Right end: Many procedures struggle with this variance change!
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Thank you very much for your attention!
2Preprint available at

https://drive.google.com/file/d/1KSbGfx-sg6B1CcjN4i2RJSaXVejOA7bp.

https://drive.google.com/file/d/1KSbGfx-sg6B1CcjN4i2RJSaXVejOA7bp

